QUALITATIVE ALGORITHMICS
USING ORDER OF GROWTH REASONING

Antoine Missierl, Spyros Xanthakisz, and Louise Tra\ré-Massuyés1

1 INTRODUCTION

Software programming and software analysis [1] are among the
most complex activities that humans can undertake. The
programmer must follow a creative and constructive process in
order to translate specifications into a low-level language and
reconstitute and understand the software according to its observed
behaviour.

The current techniques allowing one to analyse (or test) a piece of
software can be grouped in two classes : (1) dynamic techniques
which rely on executing the software and (2) sratic analysis
techniques which, examining the software independently of the
detailed execution, tend towards a global comprehension of
algorithm semantics.

Symbolic execution, which is indisputably very powerful [5, 6],
falls in the second category. Unfortunately, it suffers from several
intrinsic limitations due to formal manipulations and it does not
permit one to identify which output is influenced (in which way
and direction) by which input.

As a matter of fact, all analysis techniques (dynamic and static)
have limitations. When we reconstruct a program behaviour from a
subset of test cases, we obtain a dynamic view of the program
which is unfortunately limited, for practical reasons. On the other
hand, when we try to obtain a more global view of the program by
means of static analysis, conclusions are formally more sound but,
either too coarse (i.e. data flow analysis [17, 18]) or too precise
(i.e. symbolic execution). In this paper, we address the following
question: is if possible to reason in a generic manner (as static
analysis does) while maintaining a dynamic aspect (i.e. which
input influences which output and in which Ji,rec!ion) of the
program behaviour (as dynamic techniques do)? In other words, is
it possible to associate internal dynamics at each program
statement while maintaining the interpretation capability?

We provide an answer to this question by proposing an essentially
different formalism directly inspired from the work in Qualitative
Reasoning [16]. Although QR has mainly been concemned with
reasoning about physical systems so far, it provides general
knowledge representation formalisms and inference algorithms
like qualitative algebras and qualitative calculus techniques, order
of magnitude models, qualitative differential equations, causal
influences, etc. [13] which can easily be apply to other domains.
Our idea is that the same type of qualitative reasoning which can
be performed upon the behaviour of physical systems, can also be
performed upon software behaviour. On the other hand, we have
naturally taken inspiration from the type of qualitative reasoning
commonly performed by a human programmer. The formalism
that we propose in this paper, called Qualitative Algorithmics (QA)
relies on associating to each variable a Valued Order of Growth
(Vog). Vogs are an entirely new concept that we devised to cope
with limit behaviours of functions of time (see section 3). They
allow us to interpret each statement of a program in a dynamic
manner and to perform an exaggeration reasoning which exhibits
marginal behaviours.

1 LAAS-CNRS, 7, av. du Colonel-Roche, 31077 Toulouse Cedex,
France, email: missier, louise@laas.fr.
2 OPL, Futuropolis, 6, rue Maryse-Hilsz, 31502 Toulouse Cedex, France.

2 THE IDEAS UNDERLYING QUALITATIVE
ALGORITHMICS

Qualitative Algorithmics conveys two main ideas :

« To consider dynamic input data by executing a program with
Valued Orders of Growth including a value (v) and an order of
growth (og). Both v and og are given qualitative quantity spaces
for exhibiting the interesting qualitative properties and to benefit
from qualitative calculus techniques, allowing the coverage of a
whole set of numeric executions but avoiding the awkwardness of
symbolic execution.

» To perform a type of exaggeration reasoning which allows us to
capture the limit behaviour of a program.

If we consider a given program P as a dynamic system with a set
of input variables and a set of output variables, then our qualitative
execution method is equivalent to considering a qualitative
program [P] in which the input variables have been provided with
their own dynamics, i.e. we make the input variables vary
according to temporal laws. Hence, the vector of input variables is
given by S=(f)(1), fo(t),..., f»(1)), where fj(t) are functions of time
(see Section 3). Our formalism allows us to characterise
qualitatively the limit behaviour of these functions, given as input,
and to obtain the qualitative characterisation of the temporal
functions followed by the output variables by propagating the
qualitative features.

The characterisation of temporal functions is based on clustering
their behaviour at infinity with respect to gauge functions of the
form Pt%, that we represent by the couple (v=p, og=a). In our
formalism, v and og take qualitative values so that we capture both
the qualitative value and the qualitative order of growth of the
function at infinity. The couple (v, og) characterising the temporal
function associated with a variable x is called the Valued Order of
Growth of the variable and denoted by Vog(x).

A specific qualitative calculus presented in Section 3 allows us to
combine Vogs such that they can be propagated through the
program. Propagation is performed in a local manner, by
interpreting every statement of the program step by step. This is
referred to as a Vog-execution. The propagation mechanisms take
into account and combine the two components v and og of the
Vogs, making Vog qualitative calculus sensibly more powerful
than the qualitative calculus associated with other formalisms (see
sections 3 and 4).

By capturing the limit behaviour of variables and performing a
type of exaggeration reasoning, Vogs allow us to determine
invariable properties. The qualitative program [P] can be viewed
as an equivalence class, including all programs Pj providing the
same qualitative outputs, given the same qualitative inputs. For
example, (P1 : read(x); y:=x+7;)and (P2 : read(x); yi=x+3;)
are qualitatively equivalent, i.e. [P1]=[P2], in the sense that the
output y has the same limit behaviour given the same input x.

The paper is organised as follows : in Section 3, we present the
formal model underlying QA and its algebraic properties followed,
in Section 4, by the semantics of the qualitative interpretation
process (showing how algorithms can be interpreted qualitatively).
In Section 5, we illustrate the process of analysing software

753

behaviour with a detailed example. Finally, we discuss the salient
features of QA.

3 FORMALIZATION OF THE ORDER OF
GROWTH CONCEPT

3.1 Hardy fields

In this section we provide a mathematical structure to model the
behaviour of a function of time at infinity, i.e. in a neighbourhood
of infinity. As was explained in the previous section, every
program input variable, is not associated to a single value but to a
function of time. The idea is to deduce the asymptotic behaviour
of the sequence of outputs given the asymptotic behaviour of the
sequence of inputs. In the next section we show how this permits
us to qualitatively analyse the program behaviour.

Hardy fields [2] constitute a natural framework for asymptotic
analysis at infinity. Early works of G. H. Hardy [7] have recently
motivated new interest [3], [4]. A Hardy field is a set of real
valued functions (defined in a neighbourhood of infinity) which is
closed under differentiation and form a field under ordinary
addition and multiplication. A Hardy field contains germs of
functions which are such that any algebraic differential
combination’>3 is of constant sign at infinity [3]. This excludes
oscillatory behaviours. Examples of Hardy fields are : any subfield
of R, the field R (1) of rational functions with real coefficients in
the variable ¢, the set of rational fractions formed by the monoms
of the form (In%.1".e""), etc.

A function belonging to a Hardy field is called D-consistent [3].
Most usual functions are D-consistent, except those including an
explicit oscillating term like sint or cost. Another relevant property
is that a Hardy field is always totally ordered, which permits us the
classification of D-consistent functions relatively to their growth.
Moreover any D-consistent function is always comparable’* to
any function of the class (t*)ge -

3.2 Order of growth

The notion of order of growth comes from a comparison between
the behaviour of a function at infinity and a class of reference
functions’>® . A natural reference is the class (t*)qe g, for which
the comparison is possible with respect to any D-consistent
function.

Intuitively the simple order of growth [10] of a D-consistent
function f is the limit of the coefficients & for which f is negligible
with respect to % and the a for which 1* is negligible with respect

t
to f. It is the lower bound o such that lim -f('—) =0. For
t = 4o [
'-r
example the orders of growth of 5o ,et, =1, 0, 3, arctan(z),

In(1) , VIn(t) are 2, +oo, 1/2, -2, 0, 0, 0, O respectively.

The concept of simple order of growth does not allow us to
distinguish the constant functions (or those having a finite limit)
from log or 1/log, which have nevertheless very different
asymptotic behaviours. We introduce the concept of extended
order of growth to formalise those differences. £ and @ are
objects we use to represent respectively infinitesimal and infinitely
big quantities. Concerning usual operations, £ and @ are supposed
to be such that : e+e =g, exe=¢,Vae R, ex a=¢ and

equally for w; we have alsoVae R,w+a= o, l/e= @.

753 An algebraic differential combination of fis any polynom p(ff....f"’).
754 fand g are comparable f /= ofg) or g = off) ot~ g, Pe K .

This idea of gauge functions has still been used in [19] but the general
framework (partial differential equations) is not similar.

Although the notations are initially inspired from non-standard
analysis [8], here our symbols have not the same meaning. The
object £ does not represent a single non-standard real but a halo of
non-standard reals. It is a qualitative view of the set of non-
standard reals. Like in classical qualitative algebras [14], the
operations may lead to undetermination represented by 1:w-0=
? represents all the possible values and & -£ = 7€ represents the set
{-& 0, +¢), that is, all infinitesimals.

The extended order of growth of a D-consistent function f, noted
0g(/), is defined as the sum of the simple order of growth () and
an infinitesimal (-& O, +€), depending on whether f is negligible
with respect to 1% (0g(f) = @ -£), equivalent to B* (0g(f) =a) or o
is negligible with respect to f (0g(f) = @ + £). When the simple
order of growth is infinite the extended order of growth is
represented by the symbol @ (for consistency with the notations of
non-standard analysis). Examples : og(-¢') = +, og(t - 14) = 1,
og(tint) = 1+ 0g(t*/Int) = 2-g 0g(0) = -==

The quantity - allows us to distinguish the order of growth of the
zero function from -@. This is motivated by the fact that the order
of growth of the zero function is lower than the order of growth of
any function that tends "infinitely fast" towards zero (like e’).

3.3 Valued Order of Growth (Vog)

Despite the fact that extended order of growth is very powerful, it
suffers from a lack of important information such as the sign of a
function. We therefore enrich the concept of order of growth by
adding a ponderation coefficient, called the relative magnitude of
f and noted v(f). When f ~ pt%, we have og(f) = @ and v(f) = B;
otherwise, we define v(f) = sgn(f) € (-,0,+}, since no precise
information can be added to the order of growth which represents,
in this case, a whole class of functions. We call the couple (v(f),
0g(f)) the valued order of growth of f, noted Vog(f).

Examples of Vogs : Vog(0) = (0,-02),Vog(-2¢")=(~+®)
Vog(7) = (7,0), Vog(-2¢*+1) = (-2,4), Vog(In 1) = (+,+€), Vog(1/n
1) = (+, -€), Vog(arctan 1) = (1, 0). Oscillating functions do not
admit a Vog. However, they can be bounded within an interval of
Vogs. Vogs are provided with good properties relatively to
algebraic manipulation 7>6[10] In particular:

* (v}, 081)® (vy, 082) = (V1.2 08+ 082)
«if 0g; > 0g; we have: (v;, 0g;) @ (v3, 082) = (v}, 08))
» for the derivative: &f = sgn (') = sgn (f).sgn (0g(f)

3.4 Qualitative Vogs

In the formal mathematical model of Vogs presented above, v
takes its values in R* or (-, 0, +) and og in RU{-eo,4+e0} +(-£ 0,
+¢&J. In order to obtain a qualitative characterisation which only
retains the interesting properties of functions with respect to
algorithmics (like divergence, convergence, sign, convexity), we
perform a discretisation which is at the basis of our qualitative
model of Vogs.

—o — L -1 4 0 1 O
L3 AN N4 wur AT 4 >
-1-e/ -1}e Ze e 1% e

Qualitative operations are defined like in any standard qualitative
algebra [14]. This qualitative representation allows us to
distinguish functions of the following types : zero, all the
constants, log, square, linear functions, power, exponential, and
their inverse or their opposite (see figure below).

756 and also relatively to differentiation : if og(f) # 0 then og(f ") = 0g(f) -
I.

757

(H+1) (L1

(++0)

(++9)

(+,+€)

(.0
+-9)

essstasnans (—.—I»l)

(_v+8)
LY .y (-1 '_1)

awne

seneenrt®®

QUALITATIVE INTERPRETATION OF
PROGRAM STATEMENTS

A computer program can be considered as a sequence of
statements, which transform the initial program state into a final
state. Each state contains a list of associations: (variable 1 = value
1; ...; variable n = value nj. In our case, values are Vogs and
states are qualitative states (gstates). For instance the gstate § = {a
= [(-1, 0), (1, 0)]; b =(+,)] means that variable a has a Vog
within the interval [(-1, 0), (1, 0)] and b has a Vog equal to (+, 8).
Without loss of generality, we will consider in this section, that all
variables follow D-consistent functions.

Intuitively, the program initial state represents the order of growth
of the inputs. Input dynamics are therefore implicitly expressed by
their Vogs, directly manipulated by program statements. If, during
those subsequent executions an input remains constant and another
input decreases towards zero their Vogs will be respectively
represented by a zero and a negative order of growth. The result of
the execution permits one to determine not only which outputs are
influenced by the input dynamics (their order of growth is non
zero) but also the order of growth of the resulting output function.

In that way qualitative execution captures two features that are
essential to the software programming task. The first one concerns
data flow relationships among variables: which variable is used to
evaluate which other. In our case those relationships are not static
but dynamic since they are obtained according to an effective
qualitative execution based on variables with a dynamic ontology.
The second feature resides in the fact that the qualitative execution
captures the limit behaviour of the program. Indeed it performs an
exaggeration reasoning by capturing the dynamic behaviour of
variables at infinity. In this sense it can be viewed as a
formalization of some operations of limit testing. Limit testing
[12] is considered as one of the most widespread and efficient
black box testing technique since it uncovers many frequent and
serious programming errors: abnormal cases that are not treated,
missing code for handling extreme values (i.e. very small values),
conditions that are supposed to be always true, etc. This is due to
the exaggeration capability of the limit testing which permits us to
sensitise rare combinations of program paths. Let us now see how
qualitative execution is performed.

In the QA approach, execution is not deterministic. A state may
therefore be a union of gstates. In most programs (like C, Pascal,
etc.) this propagation is made by compounding three fundamental
syntactic structures: assignment statements, decision and iteration
statements. We briefly describe the manner those structures are
qualitatively interpreted (for a more detailed description see [11]).

4.1. Assignment statements

An assignment statement has the following form: x := E; where x
is a program variable and E is an arithmetic expression. The
execution of the assignment replaces the value of x (in each gstate
of the last state) by the result of the (qualitative) evaluation of the
expression E according to the Vog's operation laws. The properties

of Hardy fields ensure that the result is always a D-consistent
function.

4.2. Decision statements

Decision statements have the following form:
if cnd then pl1 else p2; where Cnd is a condition (e.g. a < b)
and pl, p2 are statements to be executed according to the truth
value of the condition.

Assume that at some point of a program we meet the condition (a
> b), then that @ has a greater Vog than b does not necessarily
mean that all possible numeric executions should satisfy that
condition. It rather means that if the numeric values of the
program entries are chosen to evolve so that their propagation
makes a and b evolve according to the Vog(a) and Vog(b) at hand,
then there exists a range from which a is definitively greater than
b, thus satisfying the condition. Conditions are hence interpreted
dynamically. This interpretation can be viewed as a reasoning
based on exaggeration [15].

In the QA approach, conditions may not have mutually exclusive
truth values because equal Vogs lead to undetermined situations.
This indeterminism can be handled by associating three
(qualitative) truth values to each condition ('+' for True, - for
False and'? for Indeterminate), thus permitting a very natural and
powerful algebraic manipulation [14]. Compound conditions are
evaluated by means of the two following tables summarising the
qualitative logic operations OR and AND:

And

Or

+

1+
~of ~a| + | =}

?
- ?
7

4]+

+|+]+]+

+
?

?

The execution of a decision statement is performed using two
operations, which split the current state into two partial states that,
when interpreted by the condition, yield truth values qualitatively
equal to '+ and "-'. The computation of the splitting functions is, in
its generality, NP-complete. Nevertheless, the qualitative
discretisation of the Vogs makes it straightforward.

4.3, Iterative statements

An iterative statement has the following form: while cnd do p;
which means that the statements represented by p must be
executed while the condition (dynamically evaluated) is true.

Intuitively, an iteration has the same semantics as a sequence of
decision statements. We therefore have to perform the splitting
operation. Loop execution is represented by a function that
successively transforms an initial state until a fixed point is
eventually reached. QA permits a straightforward induction
process that estimates the final Vog values of the variables that
evolve during the iteration.

5 AN ILLUSTRATIVE EXAMPLE

This section illustrates, with a concrete example based on a widely
used algorithm, the different possibilities of QA. More precisely
we will show that QA is able to:

* Simulate and verify some programmers' algorithmic
reasoning concerning dynamic relationships among
variables during execution.

* Propose and verify qualitative algorithmic models.

*» Perform a wide range of efficient error detection
techniques.

The specifications of the example are the following: Write an
algorithm that examines the first N elements of an array A and
calculates the mean value of the elements that are grealer than or
equal to a threshold T. The threshold and the elements of the array
are strictly positive. The total size of the array is greater than N.

757

We chose this example for two reasons. The first one is that it
contains all the elementary syntactic structures. The second is that
this example, although very simple, allows us to outline the
usefulness and subtlety of QA reasoning. Let us consider the
following (proper) implementation of the algorithm:

(1) 1 := 1, { Program Inputs = N, A, T }
(2) sum := 0; (Initialisations }
{3) k := 0;
(4) M := 0; { Initial Mean Value)
{5) while (1 <= N) do { Loop condition }
begin
{6) 4if (A[i] >= T) then
begin { A good element is found.)
(7) sum := sum + A[i]; (Element is accumulated)
(8) k :=k + 1; { and counted]
end;
(9) i :=1+1; { Next element in the array)
end;

{10) if (k > 0) then

(11) M = sum / k; { Result = Mean value = M)

Program statements (ps) are numbered from 1 to 11. Let us
consider that all the elements of the array vary at the same time
and are symbolised by the variable A.

In the following, we present some forms of reasoning that a
programmer may have when trying to understand the previous
algorithm. Most of them [9] consist in checking in what way
different variations performed on the entries (for example N, A and
T) influence program outputs (for example M). For instance: if this
entry increases by following that law, which are the affected
outputs and how are they affected?, which entry must I vary and in
what direction to make these outputs vary in a desired direction?,
etc. When this form of reasoning is oddly used, it commonly
generates current programming errors [9, 12].

s Case 1: Let's start with a very simple form of reasoning that
comes out from the following question: How does a linear
increase of the number of terms to be summed (namely N)
influence the final mean value M?

A naive answer, based on the fact that we sum more elements,
might conclude that M also increases. Of course, this is not always
true, and QA provides directly the right answer in the following
manner. As N increases linearly, we choose an order of growth
equal to 1 (linearity), and a positive valuation, say, +. The Vog of
N is therefore: (+, 1). In our case, N is effectively increasing since
N = [+]®[1] = +@+ = +. The Vog associated to the other two
entries (A and T), which remain static, are chosen as (+, 0). The
execution of the iteration yields a steady state:

§= {i - (.u! Oj; sum = ”0» -m)' ("" I)}; K= Kol 'W)! (uﬁ O.H;
N=(+1);A=(+0);T=(+0);M=(0, -]

After the induction step we obtain a state where: sum = [(0, -eo),
(+, B)]; k = [(0, -e=), (+, 1)]. The last condition (k>0) (PS n°10)
gives two partial states. The execution of the assignment yields:
M = sum/k = [(0, -o<), (+, u)]. This convex Vog interval contains
several Vogs, like: (0, -2), (+, -8), (+, 1), etc. We conclude that M
is positive or zero (which is a trivial result), and that dM = ?. The
functions followed by M may be either a zero function (where dM
= 0), an inverse root function (where dM = -), a linear function
(where M = +), or any other function provided that its value (at
infinity) remains positive or zero.

s Case 2: How does the exponential increase of the threshold T
(when the other inputs are constant) influence M?

A hasty response could conclude that M decreases since we sum
fewer elements. On the other hand, another naive explanation
could be that, since bigger elements are added, then the mean
value must increase. Hence, we could tend to think that we are in
the same case as Case I in which the result is unpredictable. QA
can demonstrate than none of the previous explanations are correct
and that the mean value keeps its initial value.

In fact, if we give to T the Vog, (+, &) for expressing that it
exponentially increases but still remains positive, and if we give to
the other parameters N and A which remain constant, the Vogs (+,
0), the condition inside the loop (ps n°6) is never satisfied, then k
keeps its initial value (0, -e¢) implying that the last condition
(Ps n°10) is not satisfied and that M keeps its initial value (0,-o9).

« Case 3: Let's now take a more subtle problem: What are the
initial directions of change of the entries which guarantee that M
decreases.

A first solution could consist in decreasing the threshold only,
which is not good. Indeed, such a solution causes all the elements
A to become greater than T, and the sum to accumulate all the
elements of the array. N and A being fixed, then the sum remains
fixed and therefore M has zero order of growth. Another solution
could consist in decreasing the elements of A. But, in that case, no
element will be summed and M will remain unchanged.

We conclude that the solution is to decrease simultaneously the
entries A and T. Let us give the Vogs (+, -6) and (+, -1)
respectively, and the Vog (i, 0) to N. Of course, there exists many
other possibilities. During the qualitative execution, the condition
(Ari) >= T) is always verified and we reach the following final
state: S = fi= (i, 0); sum = (+, -8, k= (1, Oy N=(, 0y A =
{+' '5}; T= f+- -IJ,' M xci (0, 'w)}

The last condition (ps n°10) is satisfied and we obtain: M = sum /
k= (+, -8) /(i 0) = (+, -6) that is, M decreases which is the
original requirement. Note that QA also permits us to conclude
that M is decreasing following the same order of growth than A.

In conclusion, we claim that QA allows the programmer to verify
that the information concerning the limit behaviour of its
implementation, is in accordance with the way he mentally
conceives his algorithm. The conclusions in the example could of
course be obtained by a simple reading of the algorithm because
the algorithm is simple (although it is already easy to make wrong
conclusions!). However, we believe that for more complex
algorithms such results, directly obtained by a simple automatic
qualitative execution, may be invaluable.

Let us now consider a key point of QA, that is, the possibility to
propose and verify algorithmic models. This is unthinkable using
classic algorithmic reasoning, because of the hugeness of the
quantitative space of inputs/outputs. Qualitative Algorithmic
Models (QAM) may be built from the qualitative values of inputs
(Test Data) associated with their expected corresponding output.
These tables may be built (of course manually) by the algorithm’s
designer (or specifier).

Let us give an illustration of QAM for the previous algorithm.
This model is uniquely based on the expected direction of change
of the output, dM, according to the directions of change of the
inputs oN, dA, oT:

Specified
QAM for N dA ar Expected
Mean- oM
Value
1. + 0 0 ?
2. 0 0 + 0
3. 0 - - -
4. 0 + 0 +
3. - ? + 0
6. + 0 + 0

We have here a very poor example of QAM. The Vogs model
permits us to build much more precise models in which, by using
different orders of growth, we may vary two entries at a different
rate.

QAM can be naturally used for black box testing (in which TD are
specification driven). It is enough to take the qualitative TD

757

included in the specified QAM and to compare the expected
results with the results given by qualitative execution. This kind of
comparison can be easily automated. Three illustrations of this
validation process follow.

« We can verify that lines 1., 2. and 3. of our QAM are in
accordance with the corresponding qualitative executions (Cases
1,2, and 3.)

+ Suppose that the programmer has inadvertently typed the if
condition (A[i] <= T)instead of (a(i]) >= T). By trying to execute
qualitatively the algorithm according to the inputs of line 4., the
tester would find M = 0 which of course does not correspond to
the specifications (dM = +).

« Suppose now that the programmer has made an error by typing
the while condition, (x <= N) instead of (1 <= N). This error is
extremely difficult to detect by classic testing techniques (static or
dynamic) because, in a conventional execution, the result M often
remains close to the correct one (i.e. they have the same order of
magnitude). By using TD of line 6. in the QAM, qualitative
execution exaggerates the program behaviour and immediately
detects the possibility of an infinite loop, since k (which is now a
control variable) is never incremented.

6 PERSPECTIVES FOR QUALITATIVE
ALGORITHMICS

The ideas of QA, i.e. the formal model of Valued Orders of
Growth and the associated qualitative calculus as presented in
Section 3 as well as the qualitative interpretation of program
statements presented in Section 4, have been implemented in a

ualitative executor prototype for Pascal called QUALEX.
%UALEX is written in Prolog and runs on a Macintosh.

We believe that this paper is the first step towards a whole new
research domain, namely Qualitative Software, which may be as
promising and fruitful as Qualitative Physics in the next few years.

We do not claim that QA will solve the whole problem of software
analysis which is extremely difficult. We do believe that it
introduces a novel and powerful aspect in software programming
which may help not only the testing process (as a "dynamic”
enrichment of static analysis) but also domains like the general
behavioral analysis of software components.

Structural testing consists of the production of Test Data by
executing (sensitising) some program logic paths. The main
problem in structural testing is to find the right combination of
entries that give the desired truth values to the conditions
appearing in the path to be covered. Automation of this Test Data
generation process is nowadays essentially based on random
generation. We understand that a Vog-execution can provide a
guidance to identify the evolution law to be given to the entries to
guarantee that a path within the source code is sensitised. It may
therefore help to detect some forms of infinite loops.

In specification verification, QA can obviously be used, as shown
in our example of Section 5, to perform tendency analysis, i.e. for
answering questions of the kind "What is the direction of change
of the output variables given the direction of change of the input
variables?", as well as for building qualitative models.

QA appears also to be an elegant formalization of a very efficient
and widespread black box testing technique, called limit testing,
for which various formalization attempts have failed. QA may
equally provide a qualitative formal framework for assisting

programmers during the debugging stage.

In qualitative simulation of software components which may be at
the basis of model-based diagnosis systems, it is enough to
perform the simplest Vog-execution of a program; i.e. by
propagating the value part (v) of the Vogs only while maintaining
the order of growth part (og) to zero. If the qualitative values of
the input variables are acquired across time, the Vog-execution

provides, by propagation, the trajectories of the output variables,
i.e. their qualitative values across time. This has considerable
impact considering that most control and monitoring systems are
nowadays software intensive, leaving a very small part to
hardware components.

Last but not least, we want to emphasise that the formal model of
Valued Orders of Growth by itself is a powerful mathematical tool
in the analysis domain. In particular, very important results are
foreseen in an application domain that is not considered at all in
this paper. Indeed, we are concurrently investigating the
application of the Vog model to the asymptotic analysis of
differential equations and the results are very promising [10].

7 REFERENCES

[1] B. Beizer (1992), Software Testing Techniques, Van Hostrand
Reinhold

einhold.

[2] N. Bourbaki (1961), Fonctions d'une Variable Réelle, Hermann.

[3] M. Bashernitzan (1981), An Extension of Hardy's Class L of "Orders of
Infinity", Journal of Mathematical Analysis, 39, 235- %

[4] M. Boshernitzan (1982), New Orders of Infinity, Journal of
Mathematical Analysis, 41, 130-167.

[5] L.A. Clarke and D.J. Richardson (1983). Symbolic Evaluation - an aid
to Testing and Verification, University Of Massachussets,

echnical 83-41.

[6] P. D. Coward (1988), Symbolic Execution systems-a review, Software
Engineering Journal, 3 (6) 229-239.

(7) G.H. Hardy (1910), Orders of Infinity, Cambridge University Press.

(8] R.F. Hoskins (1990), Standard and nonstandard Analysis, Ellis
Horwood Ltd.

[91 W. L. Johnson (1986), Intention Based Diagnosis of Novice
Programming Errors, Pitman, Morgan Kauffman.

[10] A. Missier, S. Xanthakis, L. Travé-Massuy2s (1994), Order of Growth
Concepts, LAAS-CNRS Internal Report n°94002, Toulouse

(France).

[11] A. Missier, S. Xanthakis and L. Travé-Massuyés (1994), ,?mbtam
Algorithmics using Order of Growth R ing (Full Version),
LAAS-CNRS Internal Report n°94003, Toulouse (France).

[12] G. J. Myers (1979), The art o Solﬁ-varc Testing, J. Wiley.

[13] L. Travé-Massuyés (1992), itative Reasoning Over Time: History

Current Prospects,The Knowledge Engineering Review,
Vol.7:1, 1-18.

[14] L.Travé-Massuy2s, N. Piera, A. Missier (1989), What can we do with
qualitative caleulus today 7, IFAC/IMACS/IFORS International
Symposium on Advanced Information Processing in Automatic
Control, Nancy (France).

[15] D.S. Weld (1988), Exaggeration, AAAI'8S.

[16] D.S. Weld & J. de Kleer editors (1989),, Readings in Qualitative
Reasoning about Physical Systems, Mcrgnn—l(mfnnn.

[17] C. L.Wilson & L.J. Osterweil (1985),, OMEGA: a Data Flow
Analysis tool for the C programming language, IEEE TSE, Vol 11,

No9.

[18] S. Xanthakis, C. Skourlas (1992), A Data Flow Algebra Model for
Static Analysis of Structured Programs, Int. Conf. on Software
Quality, North Carolina.

[19] K.M. Yip (1993), Model Simplification by Asymptotic Order of

Magnitude Reasoning, AAAT'93, Washington DC (USA).

757

